B Hornology of 4-manifolds

lemma 5:

If
$$X^4 = (0-\text{handle}) \cup k(2-\text{handles})$$
 then

 $H_0(X) \stackrel{\sim}{=} \mathcal{E}$, $H_1(X) = 0$ and

1) $H_2(X) \stackrel{\sim}{=} \mathcal{O}_k \stackrel{\sim}{=} \mathcal{O}_k = 0$ generated by 2-handles

 $\frac{\text{specifically: } 2-\text{handles}}{\text{surface for } L_k \text{ pushed into}}$
 $\frac{\text{surface for } L_k \text{ pushed into}}{\text{surface for } L_k \text{ pushed into}}$
 $\frac{\text{surface for } L_k \text{ pushed into}}{\text{surface for } L_k \text{ pushed into}}$
 $\frac{\text{surface for } L_k \text{ pushed into}}{\text{surface for } L_k \text{ pushed into}}$
 $\frac{\text{surface for } L_k \text{ pushed into}}{\text{surface of } 2-\text{handle}}$

2) $H_2(X, \partial X) \stackrel{\sim}{=} \mathcal{O}_k \stackrel{\sim}{=} 0$ generated by the $\frac{\text{surface of } 2-\text{handles}}{\text{surface of } 2-\text{handles}}$

Proof:

1) let
$$X_1 = (0-\text{handles}) \cup 1^{\text{st}} i'$$
 (2-handles)

Note $X_{1+1}/X_i \simeq 5^2$

50 $H_3(X_{1+1}, X_1) \rightarrow H_7(X_1) \rightarrow H_2(X_{1+1}) \rightarrow H_2(X_1, X_{1+1}) \rightarrow H_1(X_1)$
 $A_{i+1} \longmapsto \pm 1 \in \mathbb{Z}$

:.
$$H_2(X_n) \cong H_2(X_n) \oplus \mathbb{Z}_{gen}$$
 gen by A_{n+1} so inductively $H_2(X)$ is as claimed.

2) Since $H_1(x) = 0$, Universal Coefficients gives $H^2(x) \cong H_2(x)$

and Poincaré duality gives $H_2(X,\partial X) \cong H^2(X) \cong \mathcal{O}_R \mathcal{Z}$ note: if B_i is the cocore to $1^{\frac{R}{2}}$ 2-handle then $[B_i] \in H_2(X,\partial X)$ and B_i

 $B_i \cdot A_j = S_{ij}$

50 B_i gives elt $H^2(X) \stackrel{\sim}{=} Hom(H_2(X), \mathbb{Z})$ that is dual to A_i 12. B_1 's generate $H_2(X, \partial X)$

Theorem 6:

let L, v... vLn be a link in 53 and X be the 4-mfd obtained from B4 by attaching 2-handles to B4 along the L, with framing n;

let $a_{ij} = \begin{cases} lk(L_i, L_j) & 1\neq j \\ n_i & 1=j \end{cases}$

the matrix $A = (q_{ij})$ is called the <u>linking matrix</u>

we have $H_2(x) \longrightarrow H_2(x, \partial x) \xrightarrow{\partial} H_1(\partial x) \longrightarrow H_1(x)$ $\downarrow_{SII} A \xrightarrow{SII} \bigoplus_{Q} \mathcal{Z} \longrightarrow \bigoplus_{Q} \mathcal{Z}$

where we use A_i as a basis for $H_z(X)$ and $B_{1'}$ " $H_z(X, \partial X)$

thus if μ_i is the meridian to L_i then we have a presentation for the homology of H, (2x) = < M, ..., Mh | au M+ 9,2 M2+ ... >

linking matrix
$$A = \begin{pmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ 1 & 0 & 0 & -2 \end{pmatrix}$$

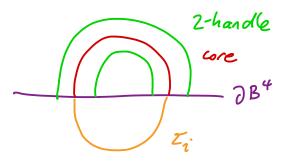
you can compute det A = 1 50 A is an isomorphism € = + € Z and so $H_1(\partial X) = 1$

Proof: we first note that

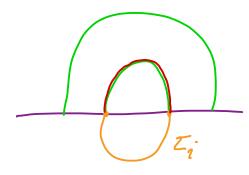
$$H_{z}(X,\partial X) \longrightarrow H_{z}(\partial X)$$

is just a boundary map so $\partial(B_1) = \mu_i$, so μ_i generate $H_i(\partial x)$ now Hz(X) -> Hz(X, dx) is just inclusion so we need to write the Ai in terms of the Bi

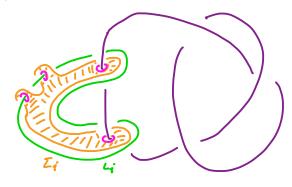
recall Az= Iz U wre



push core to dX



anything in ∂X "disapens" in $H_Z(X, \partial X)$ so we just have Σ_i with its boundary linking L_i , n_i : times in S^3



now push Σ_i into ∂X can do this except for parts where some other component

Line Ii and where $L_i \cap \Sigma_i$:

these are precisely meridian curves bounding B_i in Xso $A_i \mapsto a_{ii} B_i + a_{ii} B_2 + ... + a_{ki} B_k$

We now study $H_z(X)$ when X is closed

Recall $H_z(X) \cong H^2(X)$ (if $H_x(X)$ has no torsion)

and $H^2(X)$ has a sup-product pairing $H^2(X) \times H^2(X) \longrightarrow H^4(X) \cong \mathbb{Z}$ we interperate this geometrically

lemma 7:

If X is a closed oriented 4-manifold then any $a \in H_2(X)$ is represented by an oriented surface $Z \subset X$ see [Z] = a

<u>Proof</u>: $H_2(X) \cong H^2(X) \cong [X; K(2, z)]$ Brown

now $K(\mathcal{Z}, 2) = \mathbb{CP}^{\infty} = 0$ -cell v = 2-cell v = 4-cell v =

(indeed, $f(x) \subset \mathbb{CP}^n$ some a since it is compact now make f transverse to center of 2n-cell thus f disjoint from it if n > 2, and so f can be homotoped of of it, i.e. into \mathbb{CP}^{n-1} so inductively get $f(x) \subset \mathbb{CP}^2$)

 $H_2(Q^2) \cong \mathbb{Z}$ generated by $CP' \subset CP^2$ make f transverse to CP' and set $Z = f^{-1}(CP')$

 $H_{2}(X) \cong H^{2}(X)$ $\int_{4}^{4} f^{*}$ $H_{2}(CP^{2}) \cong H^{2}(CP^{2})$ $\int_{511}^{11} IIS$ $\int_{2}^{2} gen Gy P.O. [CP^{2}]$

50 P,D.(a) = f*(P,D.[cp']) = P.D.[f-'(cp')]

1.e a = [Z]

Big Question: given $9 \in H_z(X)$ what is the minimal genus of a surface $\Sigma \subset X$ such that $[\Sigma] = 9$?

given $[I], [I'] \in H_2(X^4)$

define $[I] \cdot [I'] = signed count of points in INI'$ (after they are made transverse)

exercise: [I] - < P.D. ([I]) - P.D. ([I]), [x]>

so the "intersection pairing"

 $H_2(X) \times H_2(X) \rightarrow \mathbb{Z}$

and cup product pairing

 $H^2(x) \times H^2(x) \rightarrow \mathbb{Z}$

are "dual"

in particular, by Poincaré Duality, it is non-degenerate it is also symmetric and bilinear

denote it $Q_X: H_Z(X) \times H_Z(X) \rightarrow Z$

lemma 8:

If X is a 4-manifold made with only 0,2-handles (con also have 4-handle) and A is the linking matrix of the attaching circles of the 2-handles, then

Hz(X) × Hz(X) -> Z

is given by A in the basis A; from lemma b

Proof: recall $lk(L_1, L_2) = signed count L_i \cap \widetilde{\Xi}_j$ Seefest surface

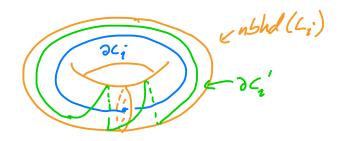
but this = signed count $\Sigma_i \cap \widetilde{\Sigma}_j$ = signed count $\Sigma_i \cap \widetilde{\Sigma}_j$ Seifert surface

for L_i with interior pushed into B^4

50
$$A_i \wedge A_j = (C_i \cup C_i) \wedge (C_j \cup Z_j)$$

= $Z_i \wedge Z_j = lk(L_i, L_j)$

now for Ann Ai take (C, UIi) and C' = parallel to Ci



Since these link n_i times the surface Σ_i that glues to C_i intersects Σ_i , n_i times

 $Q_X: H_2(X) \times H_2(X) \rightarrow \mathbb{Z}$ is an invariant of X in general, invariants of non-degenerate symmetric bilinear forms $Q: \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z}$ are

- 1) rank (Q) = r
- 2) type even if Q(v,v) even $\forall v \in \mathbb{Z}^n$ and otherwise
- 3) <u>signature</u> $\sigma(Q) = b_4 b_-$

4) definiteness

Q is positive definite if $b_{-}=0$ negative definite if $b_{+}=0$ indefinite if $b_{+}\neq0+b_{-}$

Algebraic Facts:

i) Q even then o(Q) divisible by 8

2) Q odd indefinite $\Rightarrow Q \cong \bigoplus^{P}(1) \bigoplus^{P}(-1)$ P19>0

3) Q even indefinite $\Rightarrow Q = \pm \oplus^{l} E_{g} \oplus^{q} \begin{pmatrix} 0 & l \\ 1 & 0 \end{pmatrix}$ 9>0

4) Q even definite =>

5) Q odd definite \Rightarrow even \oplus $(\pm \oplus^{r}(1))$

Geometric Facts:

The racts:

(i) $X^4 = X$, $U_3 X_2$ then $O(X) = O(X_1) + O(X_2)$ (note X_i not closed, can still define Q_{X_i} it is just not non-degenerate but still has signature)

- 2) $O(X_1 \# X_2) = O(X_1) + O(X_2)$ (clear from 1))
- 3) $\sigma(-x) = -\sigma(x)$ (easy)

 reverse orientation
- 4) X closed oriented 4-manifold then $X = 2w^5 \iff \sigma(X) = 0$
- 5) X closed, oriented, smooth 4-manifold with $\pi_i=1$ and Q_X even, then $\sigma(X)$ divisible by 16 (Rokhlin's $7h^{-1}$ 1952)
- 6) If X is closed, oriented, smooth 4-manifold with $\pi_i = 1$ and Ω_X is definite, then $\Omega_X = \pm \Theta_K(1)$ (Donaldson 1983) so the 200 of definite forms can be ignored when

so the 200 of definite forms can be ignored when studying smooth 4-manifolds!

Fact: Every closed orientable 3-manifold bounds a
4-manifold X = 0-handle v 2-handles where
the framings are even
(proof is just Kirby calculus, but a bit long)

now let M be a homology 3-sphere

(1e. $H_*(M) \cong H_*(5^3)$)

let X be a 4-manifold as in fact above with $\partial X = M$ since M a homology sphere Q_X is non-degenerate :. Alg. fact 1) \Rightarrow $O(Q_X)$ is divisible by 8 Set u(M) = 0(X)/8 mod 2

<u>lemma 9: ___</u>

M (M) is well-defined

Proof: need to see $\mu(M)$ is independent of X so let X, X' be Z such 4-manifolds

1.e. $Q_X, Q_{X'}$ even, simply connected,

and $\partial X = M = \partial X'$ let W = X u - X'

Wis a closed smooth 4-manifold with 7,(w)=1

and Qw is even

:. Rokhlin (beom. fact 5)) => O(QM) divisable by 16

that is $\sigma(Y) = \sigma(x) + \sigma(-x') = \sigma(x) - \sigma(x') = 0 \mod 16$ geom fact 1)

geom fact 3)

So $\sigma(x) \equiv \sigma(x') \mod 16$

and $\sigma(x)/8 \equiv \sigma(x')/8 \mod 2$

 $\mu(M)$ is called the Rokhlin invariant of M

example:

50 M(P)=1

<u>exercise</u>: P is also

note: this implies P does not bound a homology 3-ball!

Determining when a homology 3-sphere bounds a homology ball is a major area of study

 $2) \mu(s^3) = 0$

C. Moves between Kirky diagrams

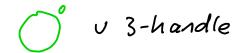
just like in dimensions 2 and 3 we can do the following manipulations to Kirby diagrams in dimension 4

1) 1/2-cancelling pairs

add or delete

2/3-cancelling pairs

add or delete



exercise: "see" the 52 that the 3-handle is attached to

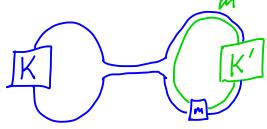
3 2-handle slides

Iven K'

(K, K' might (1sh and go over 1-handles...)

We know we can take a copy of K' using the framing (coming from $\partial D^2 \times \{\rho\} \subset \partial D^2 \times D^2$ where $\rho \in \partial D^2$) and push K over it (re. isotop over

D2+ {p} < D2+ 202 = 7+42) this gives



but what is the framing on K after the slide?

here we assume handles do not go over. 1- brandles so they represent z homo logy dasses

well recall, the handle attached to K gives a 2-homology class represented by a surface Ik (actually need to orient K for this, so that Ix oriented)

and K' gives a homology class IK, Latter onenting)

exercise: Show that the homology class represented by the hardle after the slide is Ix + Ix, it orientations agree

or is $\Sigma_{k} - \Sigma_{k'}$ if they disagree

on strand changed!

hint: the difference between these classes is

an embedded 3-manifold with boundary

orient the manifold and it gives a 3-chain

whose boundary gives the homology between

the classes

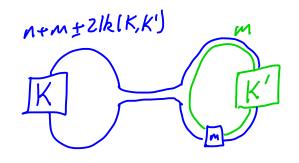
now if his and his are the honology classes associated to the handles attached to K and K'

then the knot after the slide represents the homology class $h_k \pm h_{k'}$

now from lemma 8 we know the framing on the handle after the slide is

 $(h_K \pm h_{K'})^2 = h_K \cdot h_K \pm 2h_K \cdot h_{K'} + h_{K'} \cdot h_{K'}$ $= n + m \pm 2 \sinh (k, k')$

so the framing after the slide is



exercise: with the convensions set up for framings if K.K' go over 1-handles

show the formula still works.

4) I-handle slides

one can usually avoid these, but they are "easy"

exercise: chech framing on the blue

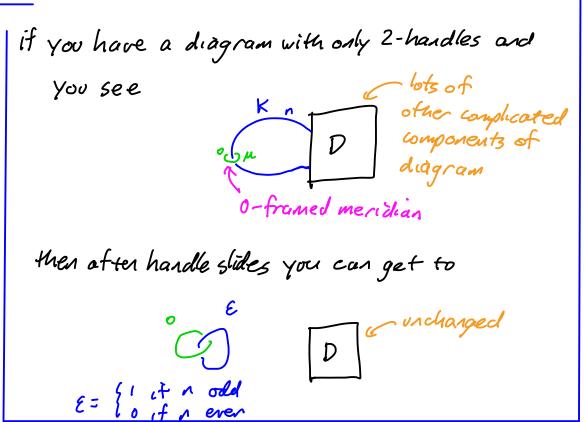
example:
$$(5^2 \times 5^2) \# \overline{CP}^2 \cong CP^2 \# \overline{CP}^2 \# \overline{CP}^2$$

sil handle slide

SII hardle slite

we first observe a very useful handle slide (when you can do it)

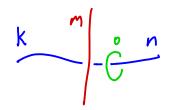
lemma 10:



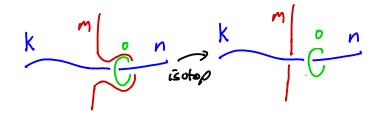
<u>Proof</u>: we first see the blue knot K can be unlinked from D

note: if you see a crossing between K and a component of D:

then you can isotop p to

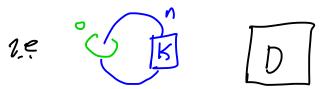


now slide red over u to get



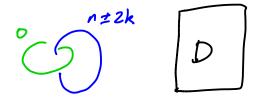
2.e. you can chang any crossing of Kwith components of D

exercise: Using this you can isotop Kum to be disjoint from D

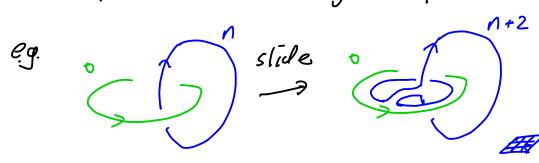


now you can also change crossings of K with itself, but when you do, the framing on K changes by IZ

eg. _____slide



now notice you can do further slides of K over u to chand framing by any even#



example: 2k $3 = (5^2 + 5^2) - ball$ $3 = (5^2 + 5^2) - ball$ $3 = (5^2 + 5^2) - ball$

Construction: Doubling

given a manifold X with 2x + &

the double of X is

$$D(X) = X \perp X$$

with reversed orientation orientation orientation by the identity

$$\frac{SII}{X}U \times / \sim$$

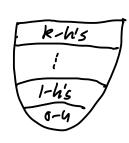
exercise: if X has boundary

Y does not

then $D(X \times Y) = D(X) \times Y$

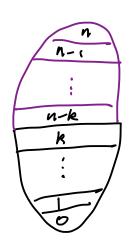
So how do we double a handle body?

given



take an upside down copy

and give



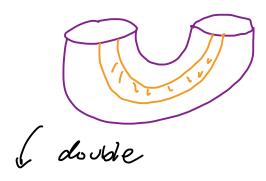
you can think about putting a mirror on top of the first handle body and looking at the reflection of the handles

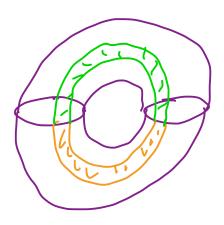
example:

given



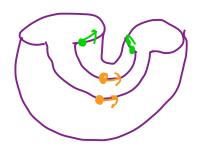
we draw so 2 at top





note the reflection of
the orange is a
green 1-handle
attached to the
belt sphere of
orange Handle

see our hondles are attached

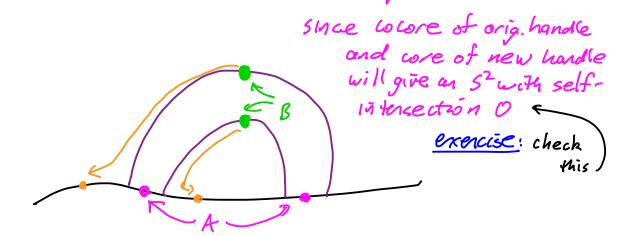


30) double

We now consider a 4-dimensional manifold with only 0,1,z-handles

the 0,1-handles become 3,4-handles which we do not need to draw so only conserned with 2-handles

as before we the doubled 2-handle will be a 2-handle attached to the belt sphere with framing of



as discussed before when belt sphere is otoped into 210-4) it will be a meridian for the original attaching sphere

examples:

1)
$$D(5^2 \times D^2) = 5^2 \times D(D^2) = 5^2 \times 5^2$$

2) moregenerally the double of the D²
bundle En over S² with Euler number n
is an S²-bundle over S²

exercise: show this

the Kirby diagram is

v 4-handle

exenuse:

"See" the orange 2-handle me fiber of the 52-bundle and the green gives a section

If n is even the above (by lemma 10) is diffeo to 25° v 4-handle

and if nodd

v 4-handle

exercise:

- i) Show there are only two 52-bundles over 52
- z) show (without Kirby calculus) that

 52×52 contains two disjoint

 spheres, one with self-intersection

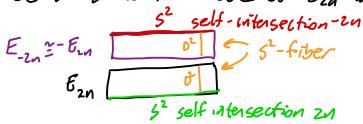
 2u the other with self-int-2n

 maybe also do this with Kirby calculus

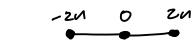
eg in ²ⁿ 04-handle

where is the disjoint -2n sphere?

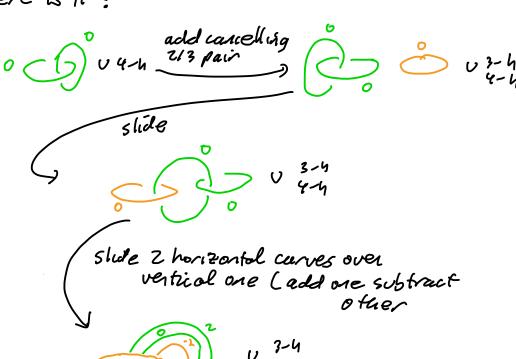
note: since 52 x 52 is the double of Ezn we see



so in S2x52 we see the plumbing



where is it?



note: the complement of $\frac{202}{155^2}$ in $5^2 + 5^2$ is $5^1 \times 0^3$ (021-handle) double U4-4

from lemma 10 this is

50 5²x5²

lemma 11:

any compact oriented 3-manifold embeds is $\#_k S^2 \times S^2$ for some k

Remark: Bizaca and E. used this to build inhinitely many smooth structures on MXIR for any compact, or rentable 3-manifold M.

Proof: we noted above any 3-manifold M is the boundary of a 4-manifold X made with one 0-handle and some number of 2-handles attached to K ... Kh with ever framing now M => D(X) but a Kirby diagram for D(K)

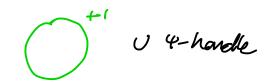
> is K, UM, ... K, UM, wher M; are meridians for Ky and have 0-framing

lemma 10 → can isotop so all Ki are unknots have a framing and are unhished

1ẹ. 👸 --- 🐧 v 4-h = #_k 5³×5²

let's use the above to explore surfaces, and their complement, in CP^2

of course CPZ is



so we see an 5 with self-intersection 1 and a complement of its whole is B4

if we take this sphere and push off a second copy we see the plumbing

+1 t

in CP2. How can we "see" this in the Kirby diagram?

U 4-handle add 3-handle 4-handle

handle

Glide

4-handle

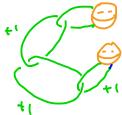
and the complement is 5'xD3 = 0-401-4

now let's try

CP' c CP2

of

from above we know a Kirby diagram for this is



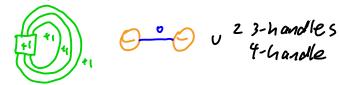
now CP2 is

o 4-handle

add 2 pairs of cancelling 2/3 pairs and a cancelling 1/2 pair

O' O O O Y-houdle

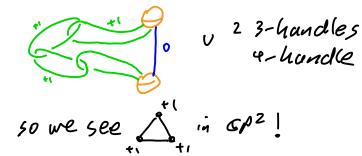
slive 2 green 0-fromed handles over +1



is otop

2 3-handles
4-handle

slide one of the +1 framed handles over blue x2



what's it's complement?

Well A is the blue 2-handle u 2 3-handles U 4-handle

to see this we turn these handles upside down! so we think of them as attached to boundary of the plumbing which is the 3-mtd



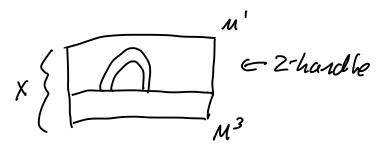
now green means 3-maritold and blue means 40 2-handles

so complement is

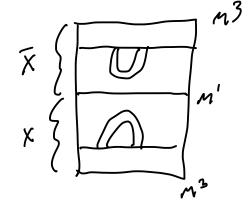
we know the 3 and 4-handles upside down are G 20 02

we need to see how upsidedown blue handle is glued on

for this we do a "relative douple"



take copy of this and give upside down

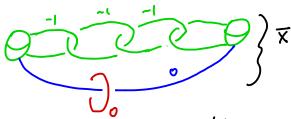


we do this just like m' in the normal double

but to get X upside down need to start with X

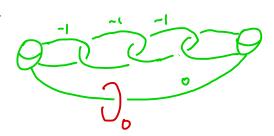
exercise: to get X from X just mirror the knots and negate framings

so we have



1 double blue 2-hundle

so upside down X is

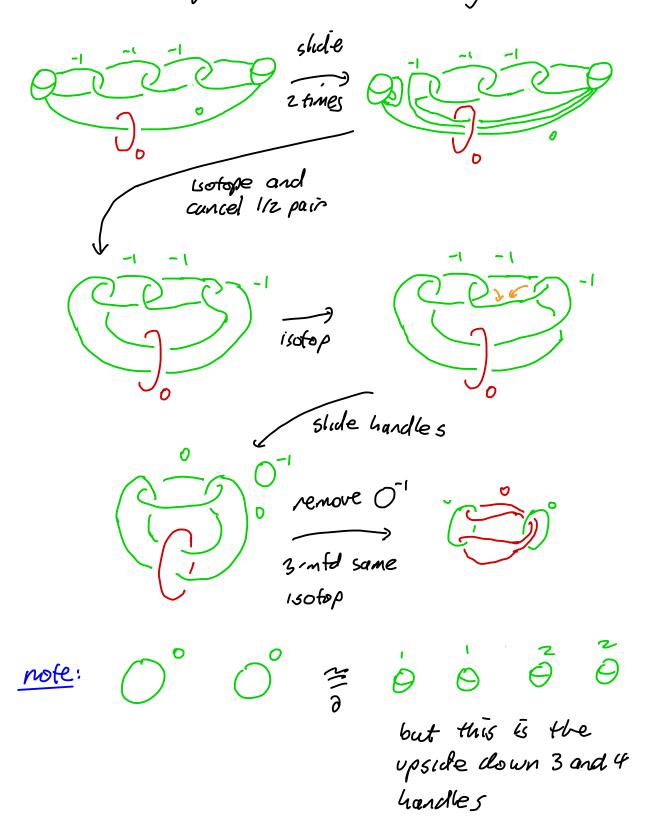


we know you can give 2 3-handles and a 4-handle

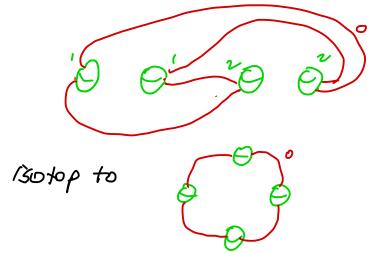
to the green 3-manifold so it is #2 5'x5'

let's manipulate the chaigram untill we see

(and drag the red handle along)

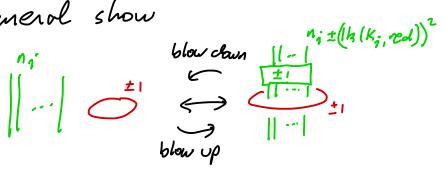


so the complement of the plumbing is



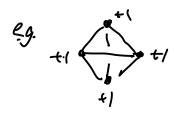
so complement of plumbing is usual of T2!

exercise: above we used a useful move in general show



exercise: can also find a "complete graph on

n verticies" with each vertex labled + 1 in Cp2



see this in Kirby diagram and determine complement.

note: it you see n m call Si, Sz orient so 1 is t

then you can create • n+m-z in a ubhd of m

to see this notice that a ubhd of the intersection

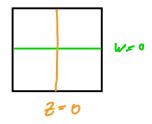
point is

$$D^{4} = D^{2} \times D^{2} \qquad C C^{2}$$

$$C C^{2}$$

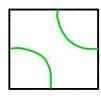
$$D^{2} \neq \{0\} \qquad D^{2} \neq \{0\}$$

$$\{2 = 0\} \qquad \{w = 0\}$$



so surfaces near intersection are

consider ZW=E E70



this is an annulus A+

$$\phi: 5' \times (0, 00) \rightarrow 4^{2}$$

$$(0, 1) \mapsto \epsilon(re^{16}, \frac{1}{7}e^{-16})$$

we can replace the 2 vitersecting disks by this annulus to get a suctace 5,# 52

exercise:

5,#52 is homologous to 5,052 huit: regun between them is a 3-monifold with boundary

so 5, # Sz is an 52 with self intersection

[5,052] = ([5,]+[5])2 = [5,]2+2[5,]-[5,]+[5,]2

= n+2+m done!

You can use A = { Zw = - E} to get S, #-52 with self-wit: n+m-2.

in general
$$gwes$$
 (g_1,n_1) (g_2,n_2) (g_1+g_2,n_1+n_2+2)

these are just as above
but now when you "resolve" last
double point, you take "internal"
wo nect sum

19. 00 00 19. 19. get a torus!

50 we get (1, n+m+k+6)

exercise:

show the homology class n & Z=H, (CP²)

(where [CP]

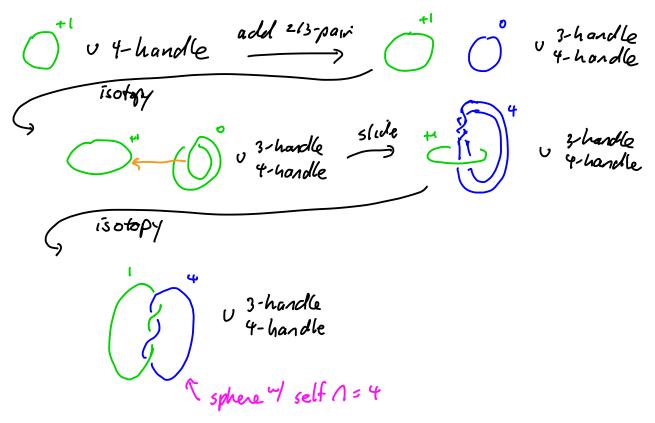
generates Hz)

for a positive is represented by

a surface of genus $\frac{(n-1)(n-2)}{2}$ with self-intensection n^2

(eg. from above to has et in

so I a sphere of self intersection 4 in EP2 let's "see" ()" in CP2



What is its complement?

it is made up of a 2-4.3-4.4-4

the 4.3-handles upside down is O O

we need to see where the 2-handle goes

as we did above we think of O as

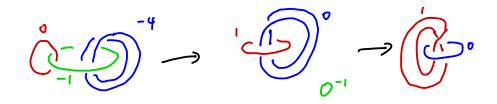
representing a 3-manifold and

the green 2-handle is attached to it

we turn this upside down

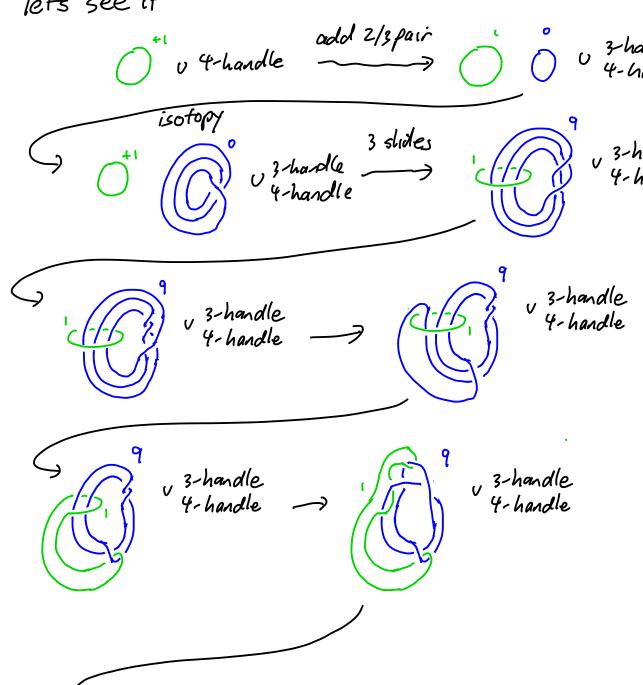
we turn this upside down (need to reverse orientation)

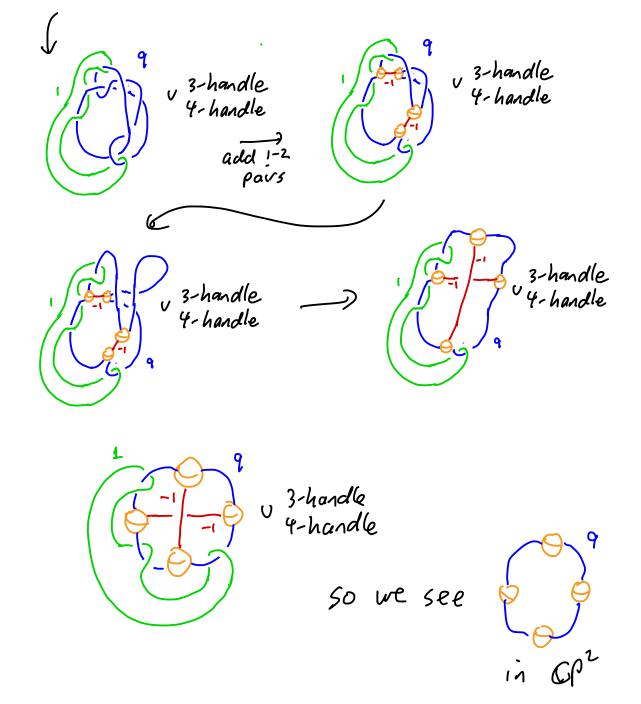
double this describes 5'x52 (so can glue 3,4-handle)



the blue is 5'x52 can think of as D(0-,1-handle) so complement of "is

now we know a torus with self 19 let's see it





Exercise: find the complement of (1,9) in CP2

example:

the Mazur manifold is

exercise: Show TI(M) = {e}

and H* (M) = H, (B4) so M is contractible (1e. $\approx B^4$) is M homeomorphic to Bq? exercise: 1) DM is not simply connected 2) let Z(2,5,7)= {3,+2,+2,7=0} 155 show 2M = 2(2,5,7) (need to find a surgery diagram for I(2.5.7)) so in 4D = B4 don't have to be B9 (in 20, 30, ≃B" => = B") note: Mx [oil] is a 5-manifold made with a 0,1,2-handle the 2-handle is attached to a curve in 53 < 54 = 7 B (equator) since "crossings" in 54 can be changed Mx [0,1] = 0 = 35 50 M× [0,1] = B4 × [0,1] ! (terms in product not uniquely determined) also D(n) = d (Mx[oil]) = 54 : [2,5,7)=7M embeds in 54! a generalized Mazw is anything of the form

goes over 1-hardle algebraically 1 time

any such manifolds has same properties as above

Fun Fact: if M is a generalized Mazur manifold and IM is a Heegaard Floer L-space then M=B4 (Group-Town)

D. I-handles again

let's start in 3D:

Consider a cancelling 1/2-pair

image of co-core
under differ

2-h

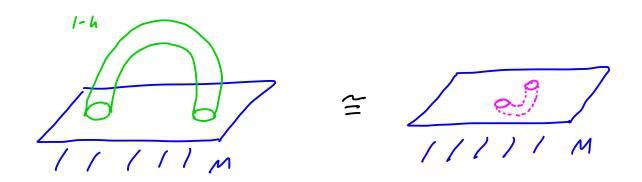
=

[1]

[M]

[M]

removering a ubhd of the cocore is the same as removing the 2-handle : same as adding the 1-handle



note: the ar (= 60-600e) on the left is isotopic to an are in IM connecting end points

easy to see if you

- i) take any arc & in 2M
- 2) push its interior into int M
- 3) remove a neighborhood of the arc

they you have attached a 1-handle to M

exercise:

- 1) chech this
- z) show a 2-handle if it crosses x in 2M

now for 40:

again consider a cancelling 1/2 pair

the boundary of the cocore of the 2-handle (as we have seen above) is

removing a ubbd of the cocore removes the 2-handle and leaves the 1-handle

take disk this

unknot bounds and

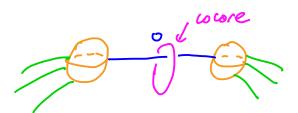
push it into interior of

0-handle, then remove a

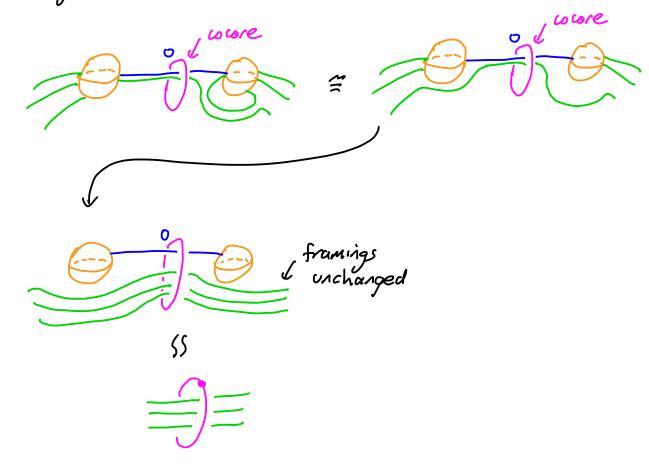
nbhd of it

denote this by

now what happens if 2-handles run over 1-handle



slide green over blue



examples:

z) T3

